Two Observers:
Setup: There are two observers embeded at the same point in a plane X. O_{2} 's coordinate system is O_{1} 's rotated by θ
The measunmect functions for the two observers are $m_{1}, m_{2}: X \xrightarrow{\cong} \mathbb{R}^{2}$ \& Denote $\mathbb{R}_{\theta}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}, v \longmapsto\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right) v$
$7:$

$m_{1} \ddagger m_{2}$ give the coordinates of an element of X in O_{i} coordinate system.

This diagram commutes.
$D: f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is coordinate independent if for any observers $O_{1} \& O_{2}$

$$
f\left(m_{1}(x)\right)=f\left(m_{2}(x)\right) \quad \forall x \in X
$$

- $\|\cdot\|$ is coordinate independent.
$T:$ For a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ f is coordinate independent
$\Leftrightarrow f \circ R_{\theta}=f \quad \forall \theta \in \mathbb{R}$
$\Leftrightarrow \exists g: \mathbb{R}_{\geqslant 0} \longrightarrow \mathbb{R}$ with $f=g \circ\|\cdot\|$
So f is coordinate independent iff it is
a function of the euclidean distance.
For pairs of points $f: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ is coordinate indepeedend f
$\exists h: \mathbb{R}_{20} \times \mathbb{R}_{30} \times[0,2 \pi) \longrightarrow \mathbb{R}$ such that $f(v, w)=h\left(\|v\|,\|w\|, \frac{\Delta(v, w))}{\zeta \text { Angle between }}\right.$

Metric Spaces:
D : A metric space is a pair (X, d) consisting of a set X \& a function $d: x \times x \rightarrow \mathbb{R}$ st.
(MI) $d(x, y) \geqslant 0 \quad$ Non negative.
(ML) $d(x, y)=0 \Leftrightarrow x=y$ seperation
(MB) $d(x, y)=d(y, x)$
(Mu) $d(x, y)+d(y, z) \geqslant d(x, z) \quad$ Trinange $\forall x, y, z \in X$.
ϕ is a mantric space
\{*\} ~ i s ~ a ~ m e t r i c ~ s p a c e , ~ $d(*, *)=0$
T : The following are metrics on \mathbb{R}^{n}

- $d_{1}(x, y)=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|$
- $d_{2}(x, y)=\left[\sum_{i=1}^{\sum_{n}}\left(x_{i}-y_{i}\right)^{2}\right]^{1 / 2} \quad$ Euclidean
- $d_{\infty}(x, y)=\max \left\{\left|x_{i}-y_{i}\right|\right\}_{i \in[n]}$
$T:\left(S_{1}, d_{a}\right)$ is a metric space $S_{1}=\left\{z \in \mathbb{R}^{2} \mid\|z\|=1\right\}$
$d a: S, \rightarrow[0,2 \pi)$,
$(x, y) \longmapsto \min \left\{\left|\phi^{-1}(x)-\phi^{-1}(y)\right|, 2 \pi-\left|\phi^{-1}(x)-\phi^{-1}(y)\right|\right\}$ with $\phi(x)=(\cos (x), \sin (x))$.
$D:$ A function $f: x \rightarrow 4$ between two metric spaces $\left(x, d_{x}\right) \notin\left(4, d_{y}\right)$ is distance preserving if

$$
\forall x_{1}, x_{2} \in X \quad d y\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)=d_{x}\left(x_{1}, x_{2}\right)
$$

D: A bijective distance preserving function is an isometry.

T: All distance preserving functions ave injective.

Lb r

Topological Spaces:
D: A topological space is a pair (X, T) where X ir a set $\& T$ is a set of subsets of X st.
$(T) \phi, x \in T$
$(T 2) U, V \in T \Rightarrow U \cap V \in T$
(TB) $\left\{V_{i}\right\}_{i \in I}, V_{i} \in T \quad \forall i \in I$

$$
\Longrightarrow \bigcup_{i \in I}^{2} V_{i} \in T
$$

The topology is a aet of subsets closed under FINITE intersections

* ARBITRARY whims.

D: Such a set T is a topology
$D: V \in T \Leftrightarrow V$ is open in the topology
$D: C \subseteq X$ closed $\Longleftrightarrow \exists U \in T$ with in the topology $c=x \backslash v$.
T : (x, τ) a topological space, $4 \subseteq X$ $\Rightarrow Y$ is a topological space with the induced topology

$$
\tau l_{y}=\{U \cap Y \mid U \in \tau\}
$$

D : For two topologies τ_{1}, τ_{2} on X, τ_{1} is finer than τ_{2} if $\tau_{2} \subseteq \tau_{1}$.
D : The discrete topology on X is $P(X)$.
D : The indescrefe topology is $\{\varnothing, x\}$.
T : The discrete topology is finer than any topology, \& any topology is finer them the indescrete to pology.
$D:\left(x, T_{x}\right),\left(4, T_{y}\right)$ topological spaces. A continuous map between the topologies is a function $f_{i} X \longrightarrow Y$ such that $(\forall V \subseteq y)\left(V \in \tau_{4} \Rightarrow f^{-1}(V) \in \tau_{x}\right)$.

Where $f^{-1}(V)=\{x \in X \mid f(x) \in V\}$ is the preimage of a sat.
T : For any topological space (X, T) $\exists a$ bijection $\operatorname{cts}(X, \Sigma) \rightarrow T$,

$$
f \longmapsto f^{-1}(\xi, \xi)
$$

Where \sum is the Sierpinski space.

TOPOLOGIES ON METRIC SPACES:
Let (X, d) be a metric space.
$D: B_{\varepsilon}(x)=\{y \in X \mid d(x, y)<\varepsilon\}$
The ball of radius ε in X.
$\left.T: T_{d}=\left\{U \leq X \mid(\forall x \in U)(-]_{\varepsilon>0}\right)\left(B_{\varepsilon}(x) \leq U\right)\right\}$ $\left(X, \tau_{d}\right)$ is a topological space.
D : A topological space (x, τ) is metrisable if there exists a metric d on x with $\tau_{d}=7$.

T: (X, d) is a metric space with associated topology τ_{d}

$$
\Rightarrow \cdot(\forall x \in X)(\forall \varepsilon>0)\left(B_{\varepsilon}(x) \in \widetilde{T}_{d}\right)
$$

- Every $U \in T_{d}$ is a union of a set of such open balls.
Open balls ave open. Then also form a basis.
$T:\left(x, d_{x}\right),\left(y, d_{y}\right)$ metric spaces, τ_{x}, τ_{y} associated topologies. $f: X \longrightarrow Y$ is continuous

$$
\begin{aligned}
\Longleftrightarrow & \left(\forall x_{1} \in X\right)(\forall \varepsilon>0)(\exists \delta>0)\left(\forall x_{2} \in X\right) \\
& \left(d_{x}\left(x_{1}, x_{2}\right)<\delta \Longrightarrow d_{y}\left(f x_{1}, f x_{2}\right)<\varepsilon\right)
\end{aligned}
$$

Normal metric definition agrees with topological definition of continuity.
D : Two metrics d_{1}, d_{2} on X are
Lipschitz equirilant

$$
\begin{aligned}
\Longleftrightarrow & (\exists h, k>0)(\forall x, y \in X) \\
& \left(h d_{2}(x, y) \leq d,(x, y) \leq k d_{2}(x, y)\right)
\end{aligned}
$$

T: This forms on equivilence relation on metrics.
T: If two metrics are Lipschitz equivilant then the indued topologies are the same ie. $\tau_{d_{1}}=\tau_{d_{2}}$.
$D:$ Continueus map $f: X \rightarrow Y$ is a homeomorphisms if there is a continues map $g: y \rightarrow x \quad$ with $f \circ g=i d_{y}, g$ of $=i d_{x}$.
T: Continuous f is homeomorphism f is bijection \& $\left(\forall v \in T_{x} \times\left(f(v) \in T_{y}\right)\right.$

LT.

TOPOLOGICAL BASIS:
$D:(X, T)$ a topological space. A set $\beta \subset \tau$ is a basis for τ $\Longleftrightarrow(\forall U \in \tau)(\forall x \in U)(\exists B \in \beta)(x \in B \subseteq U)$
T: $\Leftrightarrow(\forall \cup \in \tau)\left(\exists\left(B_{i}\right)_{i \in I}, B_{i} \in \beta\right)\left(U=\bigcup_{i \in \pm} B_{i}\right)$ Every set in the topology can be written as a (potentially infinite lempty) union over elemeats of T : (Universal Property of Π): $\left\{x_{i} \xi_{i \in I}\right.$ a family the beans.
T: β a basis for $T_{x}, f: y \rightarrow x$ a function for y a topological space
$\Rightarrow\left[f\right.$ is continues $\left.\Leftrightarrow(\forall B \in \beta)\left(f^{-1}(B) \in T_{4}\right)\right]$
When you have a basis it suffices to check the preimages of your basis elenaets to shaw continuity (N_{0} longer the whole topology).
$T: X$ a set β a collection of subsets of X with $\cdot(\forall x \in X)(\exists B \in \beta)(x \in B)$

$$
\begin{aligned}
& B_{1}, B_{2} \in \beta, x \in B, \cap B_{2} \\
& \Rightarrow\left(\exists B_{3} \in \beta\right)\left(x \in B_{3} \subseteq B, \cap B_{2}\right)
\end{aligned}
$$

THEN (\Longrightarrow) There is a unique topology T on X for which β is a basis
D : T is the topology generated by β.
$T: E_{i} \subseteq X \times X$ an equivilence relation
$\Longrightarrow \bigcap_{2 \in I} E_{i}$ is an equivilence relation
$T: Q \subseteq X \times X \Rightarrow E=\cap\{Y \leq x \times x \mid Q \subseteq Y$, 4 equivilence $\}$ relater
is an cyuivilencer relation.
D : This E is the equivilence relation generated by Q. of topological spaces, 4 anther topological space.
$\Longrightarrow \exists$ a bijection

$$
\begin{gathered}
\operatorname{Cts}\left(y, \prod_{i \in I} x_{i}\right) \xrightarrow[\underline{\varphi}]{\varphi} \prod_{i \in \tau} \operatorname{cts}\left(y, x_{i}\right) \\
\varphi(f)=\left(\pi_{i} \circ f\right)_{i \in I}
\end{gathered}
$$

Where $\pi_{j}: \prod_{i \in \pm} x_{i} \rightarrow x_{j},\left(x_{i}\right)_{i \in I} \longmapsto x_{j}$.
So given $f_{i}: Y \rightarrow X_{i}$ continues \exists a unique chit map $f: Y \rightarrow \Pi x_{i}$ such that π_{i} of $=f_{i}$ for all i.
$D:\left\{x_{i}\right\}_{i \in I}$ topological spaces. The disjoint union
 union set $\frac{11}{i \in I} X_{i}=V_{i \in \pm}\{i\} \times X_{i}$ with the topology $T^{i \in I}=\left\{\left.\frac{1}{i \in I} V_{i} \right\rvert\, U_{i} \in X_{i}\right.$ open $\left.\forall i \in I\right\}$.
$D: V_{j}: X_{j} \rightarrow 山_{i \in I} X_{i}, \quad x \longmapsto(j, x)$ (This map is centimes).
T :(Universal Property of 11): For any space e Y there is a bijection

$$
\operatorname{cts}\left(\frac{11}{i \in I} x_{i}, y\right) \longrightarrow \prod_{i \in I} \operatorname{cts}\left(x_{i}, y\right)
$$

D : X a topological space. \sim An equivilence relation on X. The quotient space X / \sim is

$$
X / \sim=\{[x] \mid x \in X\}
$$

Where $[x]=\{y \in X \mid x \sim y\}$
With the topology given by the quotient $\operatorname{map} p: x \rightarrow X / \sim, x \longmapsto[x]$, ie.

$$
T=\left\{U \subseteq X / \sim \mid \rho^{-1}(U) \text { open in } X\right\}
$$

T : For any space $Y \&$ continuous $f: x \longrightarrow Y$ such that $\left[f\left(x_{1}\right)=f\left(x_{2}\right) \Leftrightarrow x_{1} \sim x_{2}\right]$ \Rightarrow Junique centinueus map F with

D : For a pair of cut maps
$f: x \rightarrow Y, g: x \rightarrow Z$ we define the pushont of f, g as the space

$$
411 x z=(y 11 z) 1 \sim
$$

with \sim the smallest equivilence velation such that $\forall x \in X \quad\left(f_{x}, g x\right) \in \sim$

T: (Universal Property of Pushout): For given $f \& g$ ar above and cent maps $u: Y \rightarrow W$ and $v: z \rightarrow W$ such that this diagram commutes

Then there is a unique cut map $t: 4 \xrightarrow{\|} \times Z W$ such that

ie. Such that the two marks subtriungles of the diagram commute.

D: For $\quad h \geqslant 0$
$S^{n}=\left\{x \in \mathbb{R}^{n+1} \mid\|x\|=1\right\} \quad$ "n sphere"
$D^{n}=\left\{x \in \mathbb{R}^{n} \mid\|x\| \leq 1\right\} \quad$ "n bistre"

Note that $\|\cdot\|$ is euclidean d_{2} norm, \& $D^{\circ}=\{*\}$.
D : For $n \geq 1$ we denote the inclusion $L: S^{n-1} \longrightarrow D^{n}$.

$D: A$ topological space Y is obtained from topological space X by attaching n-cells $(n \geqslant 1)$ if \exists a family of continuous maps $\left\{f_{\alpha}: S^{n-1} \longrightarrow x\right\}_{\alpha \in 1}$ and a homeomorphism between $X \&$ the pushout of...

homeomorphic

Where $\left.\quad f\right|_{S^{n-1}}=f_{\infty}, L: S^{n-1} \longrightarrow D^{n}$ is the inclusion.
η is obtained from X by "ghing in" n cells along attaching maps f_{α}
Note that 1 may be empty.
$D: A$ topological space X is a finite CW complex if \exists a segence $X_{0}, \ldots, X_{n}=X$ \& topological spaces wharve X_{0} is a finite set with discrete topology \& X_{i} is obtained form X_{i-1} by attaching a flite $\#$ of i-calls.
D : A presentation of X is such a sequence along with the attaching maps $\left.\varepsilon_{\alpha}: s^{i-1} \rightarrow X_{i-1}\right\}_{\alpha \in \Lambda_{i}}$ used at each step.

Compactness:
SEQUENTIALLY COMPACT MIFRRI SPACES:
$D: X \leq \mathbb{R}$ is bounced $\Leftrightarrow \exists M>0, X \leq[-M, M]$ $D:$ For $X \subseteq \mathbb{R}, x \in \mathbb{R}$ is an adherrecet point of X
$\Longleftrightarrow \exists$ a sequence $\left(a_{n}\right)_{n=0}^{\infty}$ converging to x with $a_{i} \in X \quad \forall_{i}$

$$
\Longleftrightarrow \forall \varepsilon>0 \quad \exists y \in X \quad(|x-y|<\varepsilon)
$$

$T: X$ is closed if it contains all its adherent points. This holds in any metric space. (closed in the metric topology).
T : (Bolzano Weierstrass) $K \subseteq \mathbb{R}$ is closed and bounded iff every sequence in K contains a convergent subsequence, converging to a point in K.
$D:(X, d)$ a metric space, $\left(x_{n}\right)_{n=0}^{\infty}$ a sequence in X. $\left(x_{n}\right)_{n=0}^{\infty}$ converges to $x \in X$
$\Leftrightarrow \lim _{n \rightarrow \infty} x_{n}=x$
$\Longleftrightarrow \forall \varepsilon>0 \quad \exists N>0 \quad \forall n \in \mathbb{N}\left(n \geq N \Rightarrow d\left(x_{n}, x\right)<\varepsilon\right)$ $\Leftrightarrow \forall \varepsilon>0 \exists N>0 \quad\left(\left\{a_{n}\right\}_{n \geqslant N} \subseteq B_{\varepsilon}(x)\right)$

T: If $\left(x_{n}\right)_{n=0}^{\infty}$ has a limit it is unique.
T : A function between two metric spaces $f:\left(x, d_{x}\right) \longrightarrow\left(4, d_{y}\right)$ is cts

$$
\Longleftrightarrow\left[x_{n} \longrightarrow x \text { in } x \Rightarrow f\left(x_{n}\right) \longrightarrow f(x) \text { in } y .\right]
$$

$D:(x, d)$ a metric space is sequentially compact if every sequence in X has a conmvergent subsequence.
D : A subset $K \subseteq X$ is sequentially compact f the metric space $\left(K, d l_{k \times k}\right)$ is sequentially topological space (X, J). compact.

T: $f:\left(X, d_{x}\right) \rightarrow\left(Y, d_{y}\right)$ is cts $k \subseteq X$ sequentially compact $\Rightarrow f(K) \leq Y$ sequentially compact.
$T: f: X \rightarrow \mathbb{R}$ an nonempty sequentially compact metic space (X, d)
$\Rightarrow \exists \lambda_{1}, \lambda_{2} \in X \quad$ with

$$
\forall x \in X \quad f\left(\lambda_{1}\right) \geqslant f(x) \geqslant f\left(\lambda_{2}\right)
$$

D: $4 \leqslant X$ a metric space (X, d) is bounded if $\exists x \in X \quad \exists \varepsilon>0 \quad 4 \leq B_{\varepsilon}(x)$.
T : $K \subseteq X$ (a metric space) is sequentially compact $\Longrightarrow K$ is closed $\&$ bounded in X.
$T:(X, d)$ sequentially compact, $4 \leq X$ closed $\Longrightarrow 4$ is sequentially compact

COMPACT TOPOLOGICAL SPACES:
$D:(X, T)$ a topological space. $C=\left\{U_{i}\right\}_{i \in I}$ an indexed family of open sets.
C covers x (or τ farms an open cover) if $\quad X=\bigcup_{i \in I} U_{i}$
D: e covers $Y \subseteq X$ if $\left\{U_{i} \cap Y\right\}_{i \in I}$ covers 4.
$D: E$ is finite $f f$ is finite
D : A subcover of C is an indexed set $\left\{U_{j}\right\}_{j \in J}$ with $J \subseteq I$. which is itself a cover.
D: A topological space X is compact if every cover of X has a finite subcover.

T: β a basis for topological space X. X is compact \Longleftrightarrow every open cover consisting of sets in β has a finite subcover.

T: (X, d) sequentially compact metric space. $\forall \varepsilon>0 \quad \exists x_{1}, \ldots, x_{n} \in X \quad$ such that $\sum B_{\varepsilon}\left(x_{i}\right) \xi_{i=1}^{n}$ covers X.
$T:(x, d)$ metric space with associated (X, d) is $\quad \Longleftrightarrow(X, J)$ is segentially compact compact.

T: $K \subseteq X$ a topological space is compact \Longleftrightarrow For event indexed family of open sets $\left\{v_{i}\right\}_{i \in I}$ such that $K \subseteq \bigcup_{i \in I} U_{i}$ \exists a finite $I^{\prime} \subseteq I$ with $K \subseteq \bigcup_{i \in I^{\prime}} U_{i}$
$T: f: x \rightarrow M$ ats $K \subseteq X$ compact $\Rightarrow f(K) \subseteq 4$ is compact.

Extreme value theorem.

T: $f: X \longrightarrow \mathbb{R}$ ats on nonempty compact topological space X.
$\Longrightarrow \exists c, d \in X$ with $f(c) \geqslant f(x) \geqslant f(d) \quad \forall x \in X$.

T: Every closed subspace of a compact topological space is compact.

T: For X \& 4 compact topological spaces

- X/~ compact
- Xxy compact
- Xl compact

T: Any finite CW complex is compact
$T:($ Heine-Bonel):
$X \subseteq \mathbb{R}^{n}$ compact $\longleftrightarrow X$ is closed $\&$ bounded
$T: D^{n} \subseteq \mathbb{R}^{n} \quad \& S^{n} \leq \mathbb{R}^{n+1}$ ave compact
T : For $Y_{1}, \ldots, Y_{n} \leq X$ some space such that $\forall i \quad Y_{i}$ is compact
$\Longrightarrow \bigcup_{i=1}^{n} y_{i}$ is compact subset of X.
$D:$ Topological space X is locally compact $\Leftrightarrow \forall x \in X \quad \exists \cup \leq X$ open $\exists K \leq X$ compact such that $x \in U \leq K$.

T: X locally compact
$\Rightarrow[A \leq X$ closed $\Rightarrow A$ locally compact $]$
. $\Rightarrow[X$ Hansdaff $\Rightarrow X$ regular $]$

HAUSDORFF SPACES \& SEPERATION CONDITIONS
D : Topological space X is Hausdorff if for any $x, y \in X$ $x \neq y \quad \exists U, V$ open with $x \in \cup$ \& $y \in V$ and $U \cap V=\varnothing$.

T: X Hausdorff,$x \in X$
$\Rightarrow\{x\}$ closed
$T: X$ metrisable $\Rightarrow X$ Hausdrff
T : $\left\{X_{i}\right\}_{i \in I}$ a family of Hausseaff spaces $\Rightarrow \prod_{i \in I} X_{i}$ is Haws deaf
$T: X \& 4$ Hansdenff $\Rightarrow X 114$ thensderff
T : Any compact subspace of a Hansderff space is closed.
T : X compact, Y Hausdorff. Then any continuous bijection $f: X \rightarrow Y$ is a homeomorphism
$D: f: x \rightarrow Y$ is open when
$\underset{\text { oren sets to open }}{U \subseteq X}$ sets $\underset{\text { open }}{ } f(U)$ open

T: Any finite CW complex is compact Hausdorff.
D : Supposing one point sets ave closed in X - X is regular if for coach point x and closed $B \subseteq X$ with $x \notin B$ there exists disjoint open sets U, V such that $x \in U, B \subseteq V$.

- X is normal if for each closed disjoint pair of sets $A, B \subseteq X \exists U, V$ open and dispint $A \leq U, B \subseteq V$.

T: Any metrisable space is normal.
T: Any compact Hausdorff space is normal

Function
SUB -BASIS
D : The topology on X generated by a collection of subsets $S \subseteq P(X)$ is $\langle S\rangle=\bigcap\{J \mid T$ is a topology on X $\nRightarrow S \subseteq J \xi$.
$D:(X, T)$ topological space. A sub basic of T is any $Q \subseteq T$ such that $\langle Q\rangle=T$.
$T: U \in\langle S\rangle \Leftrightarrow V=\bigcup_{i \in T} \bigcap_{j=1}^{n_{i}} s_{j, i}$

$$
s_{j} \in S^{2-i} \quad \forall_{j}, i
$$

Any set in the topology is expressable as (compositions continuous budder certain a union of finite intersections of elements of the generating set.

THE COMPACT OPEN TOPOLOGY:
$D: X \not \& Y$ topological spaces. The compact open topology $T_{X, Y}$ an $C t s(X, Y)$ is the topology generated by the set $\{S(K, U)\}_{K \leq X(c o m p a c t,} U \leq 4$ open. where $S(k, v)=\{f 1 f(k) \subseteq U\}$.
ie. $T_{x, y}=\left\langle\left\{s(k, v) \xi_{k \subseteq x \text { complect. } U \leq 4 \text { open }\rangle}\right\rangle\right.$

T: With $T_{x, y}$ we have that for any cts $F: Z \times X \rightarrow Y$, the map $z \longmapsto F(Z,-)$ ir a cts map $Z \longrightarrow \operatorname{cts}(X, Y)$ AND for X locally compact Hausdorff there is a bijection

$$
\begin{aligned}
& \operatorname{ection}(Z \times X, Y) \xrightarrow{\Psi_{z, x, y}} \operatorname{cts}(z, \operatorname{cts}(X, Y)) \\
& \Psi_{z, x, y}(F)(z)(x)=F(z, x)
\end{aligned}
$$

The existence of this bijection is the adjunction property.
$T: C_{x, y, z}: \operatorname{Cts}(y, z) x \operatorname{cts}(x, y) \longrightarrow \operatorname{cts}(x, z)$ $(g, f) \longmapsto g \circ f$
is cts whenever $x \notin 4$ are locally compact Hausdorff.
$T: f: X \rightarrow 4$ cts, 4 locally compact Hausdorff $\Rightarrow \operatorname{cts}(y, z) \longrightarrow \operatorname{cts}(x, z)$ $g \longmapsto g \circ f$
is cts for any Z.
$T:$ gil $\rightarrow z$ ats, X locally compact Hausderff $\Rightarrow \operatorname{cts}(x, 4) \longrightarrow \operatorname{cts}(x, z)$ is cts. $f \longmapsto g \circ$ of conditions).

T: For X compact Hausdorff $\left\{\chi_{x}\right\}$ is open in $T_{X, \Sigma}$: where X_{x} is the characteristic function of $x \notin J_{x, \Sigma}$ is the compact open topology on $\operatorname{cts}\left(x, \sum\right)$

Sierpinski Space.

T: y Hausdorff $\Rightarrow \operatorname{cts}(x, y)$ Hausdorff
closure:
$D: A \leq X$ for X a topological space

- $\bar{A}=\cap \xi C \leq X \mid C$ is closed \& $A \subseteq C\}$
- $A^{0}=U\{U \leqslant X \mid U$ is open $\& U \leqslant A\}$ \bar{A} is the closure of A. A° is the interior of A.

T: Some propentler of closure

- $x \in \bar{A} \Leftrightarrow$ Every open neighbourhood of x contains an elemut of A.
- For a metric space $(X, d), \overline{B_{\varepsilon}(x)} \subseteq\{y \in X \mid d(x, y) \leq \varepsilon\}$
- $f: x \rightarrow 4$ cts $\Longrightarrow f(\bar{A}) \leq \overline{f(A)}$
- $A \subseteq B \Rightarrow \bar{A} \subseteq \bar{B}$

METRICS ON FUNCTION SPACES:
T : X compact, 4 metrisable. THEN for any metric dy inducing the topology on 4 , there is an associated metric on $\operatorname{cts}(X, Y)$

$$
d_{\infty}(f, y)=\sup \left\{d_{y}(f x, g x) \mid x \in x\right\}
$$

which gives the compact open topology.
Note that the topology an $\operatorname{Cts}(x, y)$ is independut of the choice of metric on Y.

COMPLETENESS \& FIXED POINTS:
$D:(4, d)$ metric space. $A \subseteq M$. For $y \in Y$ we define $d(y, A)=\inf \{d(y, a) \mid a \in A\}$
$T: d(-, A): Y \longrightarrow \mathbb{R}$ is cts.
$T:\left(Y, d_{y}\right)$ a metric space, K compact, $V_{\text {open }}$ st. $K \leq U \Rightarrow \exists \varepsilon>0 \quad \forall k \in K$ $\forall x \in \cup \quad d_{4}(x, k)>\varepsilon$
$D: X$ a set $\left(Y, d_{y}\right)$ a metric space $\left(f_{n}\right)_{n \geqslant 0}$ a sequence of functions with $f_{n}: x \rightarrow 4$. Let $f: x \rightarrow 4$ a function

- $\left(f_{n}\right)_{n \geqslant 0}$ converges pointwise to f $\Longleftrightarrow \forall x \in X \forall \varepsilon>0 \exists N \in \mathbb{N}\left(n \geqslant N \Rightarrow d_{y}\left(f_{n} x, f_{x}\right)<\varepsilon\right)$
- $\left(f_{n}\right)_{n \geqslant 0}$ converges uniformly to f $\Leftrightarrow \forall \varepsilon>0 \exists N \in \mathbb{N} \quad \forall x \in X \quad\left(n \geqslant N \Rightarrow d_{y}\left(f_{n} x, f_{x}\right)<\varepsilon\right)$.

T: X a topological space, $\left(4, d_{1}\right)$ metric space $f: x \rightarrow 4$ is the uniform limit of $\left(f_{n}\right)_{n \geqslant 0}$ THEN: f_{n} cts $\forall n \Rightarrow f$ cts.
D : A metric space (A, d) is complete if every cauchy sequence in A converges to a value in A.
Note thee completeness is a genuine property of the metric Not the topology.
T. If two metrics on $A, d_{1} \& d_{2}$, are Lipschitz eqgivilent tween $\left(A, d_{1}\right)$ complete $\Longleftrightarrow\left(A, d_{2}\right)$ compute
$T:(A, d)$ complete, $B \subseteq A$ closed $\Rightarrow(B, d)$ complete.
T Any compact metric space is complete.
$T: X$ compact, $\left(4, d_{4}\right)$ complet $\Rightarrow\left(\operatorname{Cts}(x, y), d_{\infty}\right)$ complete \rightarrow Topological space L metric spaces
D : A fixed point of a function $f: X \rightarrow X$ is an $x \in X$ with $f x=x$
$D:(X, d)$ metric space. $f: X \rightarrow X$ is a contraction mapping if $\exists \lambda \in(0,1)$

$$
d\left(f_{x}, f_{x^{\prime}}\right) \leq \lambda d\left(x, x^{\prime}\right) \quad \forall x, x^{\prime} \in X .
$$

$D: \lambda$ is the contraction factor
T : Any contraction mapping is cts.
T : (Banach Fixed point The):
(X, d) complete $f: X \rightarrow X$ contraction map $\Longrightarrow f$ has a unique fixed point. AND $\forall x \in X \quad\left(f^{n} x\right)_{n \geqslant 0}$ converges to this unique fixed point.
$T:($ Picard $): h: U \longrightarrow \mathbb{R}, V \subseteq \mathbb{R}^{2}$ open. st $\left(x_{0}, y_{0}\right) \in U$. and

$$
\begin{aligned}
& (\exists \alpha>0)\left(\forall\left(x, y_{1}\right),\left(x, y_{2}\right) \in U\right) \\
& \left(\left|h\left(x, y_{1}\right)-h\left(x, y_{2}\right)\right| \leq \alpha\left|y_{1}-y_{2}\right|\right)
\end{aligned}
$$

$\Longrightarrow \exists \delta>0$ such that initial value problem $\varphi^{\prime}(x)=h(x, \varphi(x)), \varphi\left(x_{0}\right)=y_{0}$ has a unique solution on $\left[x_{0}-\delta, x_{0}+\delta\right]$.
(1)

$$
D:(x, y)=\{\{x \xi,\{x, y\}\}
$$

The "Kuratonski pair" def

$$
\begin{aligned}
& X \times Y=\{(x, y) \mid x \in X, y \in Y\} \\
& \prod_{i \in I} X_{i}=\left\{\left(x_{i}\right)_{i \in I} \mid x_{i} \in X_{i}\right\}
\end{aligned}
$$

$D:$

$$
\left(x_{i}\right)_{i \in I}=\left\{\left(i, x_{i}\right) \mid i \in I\right\}
$$

(Cartesian product).
Di Disjoint union

$$
\begin{aligned}
\bigcup_{i \in I} X_{i} & =\bigcup_{i \in \mathcal{I}}\{i\} \times X_{i} \\
& =\left\{(i, x) \mid i \in I, x \in X_{i}\right\}
\end{aligned}
$$

+: $U_{i}, v_{i} \subseteq X_{i}$

$$
\begin{array}{r}
\stackrel{V_{i}, v_{i}}{\Rightarrow}=\left(\frac{11}{i} U_{i}\right) \cap\left(\frac{11}{i} V_{i}\right) \\
=\frac{11}{i}\left(U_{i} \cap V_{i}\right)
\end{array}
$$

(2) $\tau: f: X / \sim \longrightarrow Y$ is cts $\Leftrightarrow f \circ \rho$ is cts
T: There is a bijection between open sets of $\$$ saturated open x / \sim ${ }^{*}$ sets of x.

3
D: A topological group is a set X with both a topology, J, \& gray p properties $(X,+, 0)$ such that ${ }^{t}$ function

- : $\lambda_{x} x \rightarrow x$ is ats
$(-)^{-1}: x \rightarrow x$ is cts
D: An isomerpotsm of Topological gravips is an isomorphism of groups that is also a henveomorphism.
(4) $1: x$ locally compact Hoursdeft $\Rightarrow X$ is homeomorphic to a subspace of a compact Hausdorff space.
D : Far LCH space X we define the one-point-compactificotion $\tilde{x}=x \Perp\{\infty\}$ which is compact Haurdenff.
- $U \leq \widetilde{x}, \infty \notin U$ open $\Leftrightarrow U$ open in X.
- $U \subseteq \tilde{x}, \infty \in U$ open
$\Leftrightarrow \exists K \leqslant V$ compact with $U=K^{c} 11 \xi \infty \bar{\xi}$.
D : A saturated open set $U \subseteq X$ (5) Paths is a set that
- Is open
- $x \sim y, x \in V \Rightarrow y \in V$

