Two Observers: Setup: There are two deservers embedded at the same point in a plane X. Oz's coordinate system is Oi's rotated by O. The measurment functions for the two m, \$mz give the coordinates of an element of X in Oz $\frac{7}{\mathbb{R}^2} \xrightarrow{\mathbb{R}_0} \mathbb{R}^2$ Euclidears norm R² This diagram commutes. coordinate system. DifiR2 -> R is coordinate independent $f_{m_1(z_1)} = f(m_2(z_1)) \quad \forall z \in X.$ • || · || is coordinate independent. $da: S, \rightarrow (0, 2\pi)$ T: For a function fiR²→R f is coordinate independent ⇒ foRo = f ¥0∈R ⇒ Jg:R20→R with f=go ||·|| So f is coordinate independent iff it is a function of the euclidean distance. For pairs of points $f: \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}$ is coordinate independent iff ∃h: R>o× R>o×[0,2π) → R such that $f(v, \omega) = h(\|v\|, \|w\|, \Delta(v, \omega))$ SAngle between injective.

Metric Spaces:

D: A metric space is a poir (X, d) consisting of a set X f a function $d: X \times X \longrightarrow \mathbb{R}$ st. $(Mi) d(x,y) \ge 0$ Non negative. $(M2) d(x,y) = 0 \iff x = y$ separation (M3) d(x,y) = d(y,x) Symmetry $(M4) d(x,y) + d(y,z) \ge d(x,z)$ Trinange $\forall x.y, z \in X$.

\$ is a mutric space \$#3 is a mutric space, d(*,*)=0

T: The following are metrics on \mathbb{R}^{h} • $d_{1}(z,y) = \sum_{z=1}^{n} |z_{z} - y_{z}|$ • $d_{z}(z,y) = \left[\sum_{z=1}^{n} (z_{z} - y_{z})^{2}\right]^{1/2}$ Furlidean • $d_{\infty}(z,y) = \max \{ |z_{z} - y_{z}| \}_{z \in [n]}$

T (S₁, da) is a metric space S₁ = $\xi \neq \in \mathbb{R}^2$ [$|| \neq || = | 3$ da: S₁ $\rightarrow [0, 2\pi 7]$, ($\pi_1 y$) $\longmapsto \min \xi | \phi^{-1}(\pi) - \phi^{-1}(y)|$, $2\pi - | \phi^{-1}(\pi) - \phi^{-1}(y)| 3$ with $\psi(\pi) = (\cos(\pi), \sin(\pi))$.

D: A function f.X -> Y between two metric spaces (X,dx) & (Y,dy) is dictance preserving f $\forall x_1, x_2 \in X$ $dy(f(x_1), f(x_2)) = d_X(x_1, x_2)$

D' A bijective dictance preserving function is an isometry.

T: All distance preserving functions are injective.

Topological Spaces: D: A topological space is a pair (X,T) where X is a set of T
D: A topological space is a pair
(X, T) where X is a set of T
is a set of subsets of X st.
$(\Pi) \phi, \chi \in \Gamma$
$(\tau^2) U, V \in \Upsilon \implies U \cap V \in \Upsilon$
$(T3) \{ V_i \}_{i \in I}, V_i \in T \forall i \in I$
$\Longrightarrow \bigcup_{\overline{z} \in \mathbb{T}} \bigvee_i \in \mathcal{T}$

The topology is a cet of subsets closed under FINITIE intersections \$ ARTBITRARY whichs.

D: Such a set T is a topology D: VET > V is open in the topology D: CEX closed > JUET with in the topology C=X\U.

T: (X, T) a topological space, YCX Y is a topological space with the induced topology T|y = EUNYIUEY3

D: For two topologies T_1 , T_2 on X, T_1 is finer than T_2 if $T_2 \subseteq T_1$. D: The discrete topology on X is P(X). D: The indecrete topology is $E \beta$, X 3. T: The discrete topology is finer than any topology, 4 any topology is finer them the indecrete topology.

D: $(X, T_X), (Y, T_Y)$ topological spaces. A continuous map between the topologies is a function $f: X \longrightarrow Y$ such that $(YV \subseteq Y)(Y \in T_Y \Longrightarrow f^{-1}(Y) \in T_X).$

Where $f'(V) = \mathbb{E} \times (\mathbb{E} \times [f(x) \in V])$ is the preimage of a set.

To For any topological space (X, T) $\exists \alpha \text{ bijection } cts(X, \Sigma) \longrightarrow T$ $f \longmapsto f'(\Xi; \Xi)$ Where Σ is the Sierpinski space. TOPOLOGIES ON METRIC SPACES: Let (X, J) be a metric space D: $B_{\varepsilon}(x) = \xi y \in X | J(x, y) < \varepsilon 3$ The ball of radius ε in X. T: $T_{J} = \xi \cup \leq X | (the U)(\exists \varepsilon > 0)(B_{\varepsilon}(x) \leq U))$ (X, T_{J}) is a topological space.

D: A topological space (X, T) is metrisable if there exists a metric d on X with $T_d = T$.

	(X,d)	is a	netric	space	with
associa	ted	topology	77		
\sim	•(∀ n	EXXYE	>0)(B€	(~) E	YJ)
_>	• Even	ry Ve	Tj is	a union	y a
				bolls.	
					a basis.

T: (X, dx), (Y, dy) metric spaces, Tx, Ty associated topologies. f: X→Y :s continuous ↔ (Ye. ∈ X)(YE>0)(JS>0)(Yz. ∈ X) (d(2, 22) < S ⇒ dy(fz., fz.) < E) Normal metric definition agrees with topological definition of antimity.

D: Two metrics d, dz on X are Lipschitz equivilant (Jh.k=>0)(Yz.y EX) (hdz(z.y) ≤d.(z.y) ≤ kdz(z.y))

T: This forms on equivilence relation on metrics.

T: If two metrics are Lipschitz equivilant then the induced topologies are the some ie. Td. = Td2.

D: Continueus meyo f: X→Y :s a homeomorphism if thue :s a continuous map g: Y→X with fog=idy, gof=idx. T: Continuous f is homeomorphism ➡ f is bijection & (∀U∈ Tx (f (U) = Ty)

TOPOLOGICAL BASIS: D: (X, T) a topological space. A cet BET is a basis for T ⇐> (∀U ∈ ア)(∀z ∈U) (∃B ∈β)(z ∈B ⊆U) $T \iff (\forall U \in \mathcal{T} (\exists (B_i)_{i \in I}, B_i \in \beta) (U = \bigcup_{i \in I} B_i))$ Every set in the topology can be written as a (potentially infinite lempty) when over elements of the basis TiB a basis for Tx, f: Y -> X a function for X a topological space ⇒(f is continuens ⇔(UB+B)(f"(B) + Ty)) When you have a basis it suffices to check the preimages of your besis elements to show continuity (No longer the whole fopology). T: X a cet B a collection of subsets of X with ·(Vx +X)(JB +B)(x +B) · B1, B2 €B, x €B, ∩B2 →(∃B2 €B)(2. €B2 €F $\rightarrow (\exists B_3 \in \beta) (z \in B_3 \leq B, AB_2)$ THEN (=>) There is a unique topology T on X for which 13 is a basis D: T is the topology generated by p.

CREATING TOPOLOGIES: D: $\overline{Z} X_i \overline{3}_{i \in \mathbb{T}}$ an indexed family of topological spaces. The product space $\prod X_i$ is the product set with the topology generated by the following basis $B = \begin{cases} \prod V_i & V_i \subseteq X_i & \text{open Viel} \\ i \in \mathbb{T} & V_i & Ei \in \mathbb{T} & V_i \neq X_i \overline{3} & \text{is finite} \end{cases}$ The basis is All such products over all possible V_i d all possible finite collections of term.

T: Ei ⊆X×X on equivilence relation ⇒ ∩ Ez is an equivilence relation T: Q ⊆ X × X ⇒ E = ∩ E 4 ⊆ ××X | Q ⊆ 4, 4 equivilence is an equivilence relation recented by Q. D: This E is the equivilence relation generated by Q.

- T: (Universal Property of TT): $\xi \times_i \overline{3}_{i \in I}$ a family of topological spaces, Y and the topological space. \Longrightarrow \exists a bijection $Cts(Y, TT \times_i) \xrightarrow{\cong} TT_{i \in I} Cts(Y, \times_i)$ $P(f) = (Tt_i \circ f)_{i \in I}$ Where $Tt_j: TT \times_i \xrightarrow{\longrightarrow} X_j$, $(x_i)_{i \in I} \xrightarrow{\longrightarrow} T_j$. So given $f_i: Y \xrightarrow{\longrightarrow} X_i$ continuous \exists a unique Cn't map $f: Y \xrightarrow{\longrightarrow} TT \times_i$ such that $Tt_i \circ f = f_i$ for all i.
- D: $\xi X_{\hat{z}} \hat{z}_{\hat{z} \in I}$ topological space. The disjoint union or coproduct space $\underbrace{\prod_{i \in I} X_{\hat{z}}}_{i \in I} X_{\hat{z}}$ is the disjoint union set $\underbrace{\prod_{i \in I} X_{\hat{z}}}_{i \in I} = V_{\hat{z} \in I} \hat{z} \hat{z} \hat{z} \hat{x} \hat{x} \hat{z}$ with the topology $T = \xi \underset{i \in I}{\coprod} V_{\hat{z}} | V_i \in X_i$ open $\forall \hat{z} \in I \hat{z}$.

D: V_{j} : $X_{j} \rightarrow \perp_{iet} X_{i}$, $\varkappa \mapsto (j, \varkappa)$ (This map is continueurs).

T: (Universal Property of <u>II</u>): For any space Y there is a bijection $cts(\underbrace{II}_{iei} X_i, Y) \longrightarrow \prod_{iei} cts(X_i, Y)$

D: X a topological space · ~ An equivilence relation on X. The quotient space ×/~ is

 $\chi_{/\sim} = \frac{1}{2} [x] |x \in X$

Where $[x] = \xi y \in X | x \sim y \}$ With the topology given by the quotient map $p: X \rightarrow X/\sim$, $x \mapsto [x]$, i.e. $T = \xi \cup \subseteq X/\sim | p^{-1}(\cup)$ open in X }

T: For any space Y & continuous f: X -> Y such that [f(x,1=f(x2) => x,~~~z] ⇒ Funique continueres maps F with × ~ × /~ commuting f

B) For a point of cut heaps
f: X - Y, g: X - Z we adjuse the
pushed of f.g. as the opace

$$Y \perp \chi Z = (Y \perp Z) / \Lambda$$

With Λ the mediate orbital
such that $Vx \in X$ (fr. gr) $\in \Lambda$
S.
 $Y \perp \chi Z = (Y \perp Z) / \Lambda$
Note that 11×10^{-1} is cucliden of a norm.
 $4 D^{-1} \in \mathbb{R}^{+3}$.
 $D^{-1} \in \mathbb{R}^{+3}$.
 $D^{-1} = \mathbb{R}^{-1}$.
 $D^{-1} = \mathbb$

Compactness:	
SEQUENTIALLY COMPACT METRIC SPACES:	:0
D: X E IR is bounded = JM>0, X E (-M, M]	bour
D: For XER, xER is an adherveert	
	Comp
point of X \iff $\exists a \text{ sequence } (a_n)_{n=0}^{\infty}$ converging to	Τ: (χ
z with $az \in X$ $\forall z$	\Rightarrow
$\iff \forall \epsilon > 0 \exists y \in X (x-y < \epsilon)$	
T: X is closed if it contains all its	COMF
adhevent points. This holds in any metric	D: (
-	an in
(closed in the metric topology).	C
	if
T: (Bolzano Weievstrass) KER is closed	D: C
and bounded iff every sequence in	٩.
K contains a convergent subsequence,	D: C
converging to a point in K.	D: A
	٤ ر. ٤
D: (X,d) a mutric source (2m) ~ a convence	ر ۲
$D: (X,d)$ a multic space, $(z_n)_{n=0}^{\infty}$ a requerce in $X \cdot (z_n)_{n=0}^{\infty}$ converges to $x \in X$	D: A
$ \Longrightarrow \lim_{n \to \infty} x_n = x $	every
$\iff \forall \epsilon > 0 \exists N > 0 \forall n \in \mathbb{N} (n \ge N \Rightarrow d(x_n, z) < \epsilon)$	subcou
$\Leftrightarrow \forall \epsilon > 0 \exists N > 0 (\epsilon a_{N} \exists_{k \geq N} \subseteq B_{\epsilon}(\infty))$	
	ТВ
T: If (xn) noo has a limit it is unique.	Xis
T: A function between two metric spaces	
$f: (X, d_X) \longrightarrow (Y, d_Y) \text{ is ots}$ $\iff \begin{bmatrix} x_n \longrightarrow x & \text{in } X \implies f(x_n) \longrightarrow f(x) & \text{in } Y \end{bmatrix}$	_
$\iff (x_n \longrightarrow x in \chi \implies f(x_n) \longrightarrow f(x) in \gamma$	()
- , .	Т: (х
D: (X,d) a metric space is seguentially	∀ε>c
Compact if every sequence in X has	Ĩ
a conservent subsequence.	
D: A subject KGX is sequentially compact	Τ:(γ
if the metric space (K, d ***) is sequentially	topola
Compact	`(x
	Sequ
$ \begin{array}{c} \hline \hline \\ $	
sequentially compact \Longrightarrow $f(K) \leq Y$ sequentially	T!K
compact.	\Leftrightarrow
	Ę
T: f: X	Ja
compact meter space (X, d)	
$\Rightarrow \exists \lambda_1, \lambda_2 \in X$ with	T:f:X·
$\forall x \in X$ $f(z,) \ge f(x) \ge f(z_2)$	
Extrance when theorem.	

YEX a metric space (X,d) is it JzEX JESO YEBE(22). KEX (a metric space) : 5 sequentially pact \implies K is closed & bounded in X. (,d) sequentially compact, Y = X closed » I is sequentially compact PACT TOPOLOGICAL SPACES: (X, T) a topological space. $C = \{U_i\}_{i \in I}$ ndexed family of open sets. covers X (or Z forms an open cover) X = U Ui Covers YEX if EViny3ier covers e is finite of I is finite subcover of C is an indexed cut Sjej with JSI. which is itself CONEN. I topological space X is compact if y cover of X has a finite ver. a basis for topological space X. s compact \iff every open oner consisting of sets in B has a finite subcover. X,d) sequentially compact metric space. O Jr, , , zn EX such that $\mathcal{E}B_{\mathcal{E}}[x_i]\mathcal{F}_{\overline{z}=1}$ Covers X. X,d) metric space with associated logical space (X, T). (χ, q) is (χ, τ) is compactuntially compact < EX a topological space is compact For eveny indexed family of open sets Vi3iEI such that KEUU: finite $T' \subseteq T$ with $K \subseteq \bigcup_{i \in T'} \bigcup_i$ →4 ds KGX compact ⇒f(K)⊆Y is compact.

Extreme value theorem.

$T: f: X \longrightarrow \mathbb{R} cts on nonempty compact$ $topological space X:$ $\implies \exists c, d \in X with f(c) \ge f(x) \ge f(d) \forall x \in X.$	H# D T
T: Every closed subspace of a compact topological space is compact.	द्य Tः
T: For X & Y compact topological spaces • X/~ compact • X × Y compact • X ILY compact	T T
T: Any finite (W complex is compact	
T: (Heive-Bonel): X⊆R ⁿ compact ⇒ X :s Ubsed & bounded T: D ⁿ ⊆ R ⁿ & S ⁿ ⊆ R ⁿ⁺¹ are compact T: For Y ₁ ,, Y _n ⊆ X some space such	D
T: For $Y_{1},, Y_{n} \subseteq X$ some space such that $\forall i$ is compact $\implies \bigcup_{i=1}^{n} Y_{i}$ is compact subset of X .	T H
D. Topological space X :r locally compact <> Yx & JUSX open JKSX compact such that xEUSK.	<u>D:</u> مالا مالا
T: X locally compact $\cdot \Longrightarrow [A \subseteq X \text{ closed} \Rightarrow A \text{ locally compact}]$ $\cdot \Longrightarrow [X \text{ Handouff} \Rightarrow X \text{ regular}]$	• > pe
	T: T

HAUSDORFF SPACES & SEPERATION CONDITIONS D: Topolo gical space X is Hausdorff if for any x, y EX $x \neq y \exists U, V$ open with $x \in U$ $\notin y \in V$ and $U \cap V = \varphi \delta$. T: X Hausdorff, $x \in X$ $\implies \xi \times 3$ closed T: X Hausdorff, $x \in X$ $\implies \xi \times 3$ closed T: X metrisable $\implies X$ Hausdorff $f = \xi \times 3$ closed T: X is $\xi \in T$ a family of Hausdorff $spaces \implies TX_i$ is Hausdorff $T: X \notin Y$ Hausdorff $\Rightarrow X : ILY$ thousdorff T Any compact subspace of a Hausdorff space Is closed. T: X compact, Y Hausdorff. Then any continuous bijection $f: X \rightarrow Y$ is a homeomorphism

D: f: X ~~ 1 is open when UEX open ~~ f(U) open Mayos open sets to open sets

T: Any finite CW complex is compact Hausdouff

D: Suppossing one point sets are closed in X • X is regular if for coseh point z and closed BEX with z & B thure exists disjoint open sets U, V such that z & U, BSV.

• X is hormal if for each closed disjoint peir of sets $A, B \subseteq X \exists U, V$ open and disjoint $A \subseteq U$, $B \subseteq V$.

Any metrisable space is normal. Any compact Housdorff space is normal

Function Spaces:

SUB-BASIS

- D: The topology on X goverated by a collection of subsets $S \stackrel{<}{=} \mathcal{P}(X)$ is < <> =
 < < </p>
 < < </p>
 < </ \$ S = J 3. D: (X, T) topological space A sub basis of T is any QET such that <Q>=T. $T: \bigcup \in \langle S \rangle \iff \bigcup = \bigcup_{\substack{i \in I \\ j \in I}} \bigcap_{\substack{i \in J \\ j \neq i}} S_{j,i}$ Any set in the topology is expressable as
- $\overset{\mathsf{T}}{\longrightarrow} C_{X,Y,z} \stackrel{\mathsf{r}}{\longrightarrow} Cts(\underline{Y},\underline{z}) \times Cts(\underline{X},\underline{Y}) \stackrel{\longrightarrow}{\longrightarrow} Cts(\underline{X},\underline{z})$ $(q,f) \longrightarrow q o f$ is cts whenever × \$ 4 are locally compact Hausdorff. T: f:X-4 ctr, 4 locally compact $\mathsf{Hoursdurff} \implies \mathsf{cts}(Y, Z) \xrightarrow{} \mathsf{cts}(X, Z)$ is cts for any \mathbb{Z} . $T: g: Y \rightarrow \mathbb{Z}$ cts, X locally compact Hausdurge \Rightarrow (ts(x,y) \longrightarrow cts(x,z) is de $f \longrightarrow g \circ f$ Compositions continuous ounder certain conditions).
- T: f: X Y. S a subbasis for the topology is open in JX, I i where Xx is $m' y \Longrightarrow \left(f : \longleftrightarrow f'(U) \text{ open} \right)^{*}$ $\left(cts \longleftrightarrow Y U \in S \right)^{*}$

a union of finite intersections of elements

of the generating set.

THE COMPACT OPEN TOPOLOGY

TS For X compact Hausdorff EXX3 the characteristic function of X & Tx, z is the compact open topology on Cts(X, Z) Sierpinski Space.

$$T : Y Hausdorff \implies ds(X,y) Hausdorff$$

D: X & Y topological spaces The compact open topology Tx,y on cts (X,Y) is the topology generated by the set $\xi S(K, U) \xi_{K \in K \text{ impact}}, U \leq Y \text{ open}$ where $S(K, U) = \xi f(f(K) \leq U \}$ ie Txing = < ES(K,U) 3KEX comparent, USY open> T: With Tx, we have that for any cts $F:ZXX \rightarrow Y$, the map $Z \mapsto F(Z,-)$ is a cts map Z -> cts(X,Y) AND

for X locally compact Hausdorff three is bijection $\underbrace{\Psi_{z,x,y}}_{ts(z, ts(X,y))}$ $\underbrace{\Psi_{z,x,y}}_{ts(z, ts(X,y))}$ a bijection Y_{2*x}(F)(z)(x)=F(z,x)

The existence of this bijection is the adjunction property.

CLOSURE:

- D A = X for X a topological space ·A = NZCEX (C is closed & AEC3 $\cdot A^{\circ} = \bigcup \{ \bigcup \leq X \setminus \bigcup : s \circ pen \notin \bigcup \leq A \}$ Ā is the closure of A. A° is the interior of A.
- T: Some properties of closure • re EA revery open neighbourhood of re contains an element of A. · For a metric space (X,d), BELR) E EyeX | d(x,y) LE3 $f: X \to Y \quad \mathcal{J}_S \Longrightarrow f(\overline{A}) \leq \overline{f(A)}$ · ASB ⇒ ASB

METRICS ON FUNCTION SPACES:

T: X compact, Y metrisable. THEN for any metric dy inducing the topology on Y, there is an associated metric on (ts(X,Y) dw(f,g) = sup Edy(fx,gx) | x \in X } which gives the compact open topology. Note that the topology on Cts(X,Y) ; independent of the choice of metric on Y.

COMPLETENESS & FIXED POINTS: D: (Y, d) metric space · A⊆Y. For y ∈ Y we define d(y, A) = inf & d(y, a) | a∈A} T: d(-, A): Y → R; s cts. T: (Y, dy) a metric space, K compact, V open st. K⊆V ⇒ J €>0 YkeK Yz∈V dy(z, k)> €

D: X a set (Y, dy) a metric space $(f_n)_{n>0}$ a sequence of functions with $f_n: X \longrightarrow Y$. Let $f: X \longrightarrow Y$ a function

(fn)nzo converges pointwise to f
 ⇒ ∀x ∈ X ∀E>0 ∃ N ∈ N (N ≥ N ⇒ dy(fn x, fx) < E)

· (fn)nzo converges wiformly to f ⇐ 42>0 3NEN 4xEX (nZN ⇒dy(fnz,fz)<E)

T: X a topological space, (Y, d_y) metric space $f: X \longrightarrow Y$:s the uniform limit of $(f_n)_{n \ge 0}$ THEN: f_n its $\forall h \Rightarrow f$ its.

D: A metric space (A, d) is complete if every cauchy sequence in A converges to a value in A. Note that completeness is a genuine property of the metric Not the topology. T. If two metrics on A, d, & dz, one lipschitz equivilent then (A, d,) complete (A, dz) complete T. (A, d) complete, B S A closed \Rightarrow (B, d) complete.

T: Any compact metric space is complete T: X compact, (Yidy) complet => ((ts(x,4), Los) complete Topological space - metric spaces D: A fixed point of a function . $f: X \longrightarrow X$ is an $x \in X$ with f = xD: (X,d) metric space $f: X \longrightarrow X$ is a contraction mapping if $\exists \mathcal{R} \in (0,1)$ $d(f_{\mathcal{X}}, f_{\mathcal{X}}') \leq \lambda d(\mathcal{X}, \mathcal{X}') \quad \forall \mathcal{X}, \mathcal{X}' \in \mathcal{X}.$ D: I is the contraction factor T: Any contraction mapping is ets. T: (Banach Fixed point Thm): (X,d) complete. f: X→X contraction map => f has a unique fixed point. AND VreX (fr) no converges to this unique fixed point. T(Picard): h: U - R, UER open. st $(\pi_{\circ}, \gamma_{\circ}) \in \bigcup$ and $\left(\exists \kappa > \circ\right) \left(\forall (\mathbf{x}, \mathbf{y}_{1}), (\mathbf{x}, \mathbf{y}_{2}) \in \mathbf{U} \right)$ $(|h(n, y_1) - h(n, y_2)| \leq \alpha |y_1 - y_2|)$ → 35>0 such that initial Value problem Ψ'(x)=h(x, Ψ(x)), Ψ(x.)=yo has a unique solution on [20-5, 20+5].

TUTORIALS: \bigcirc D: (x,y) = 2 223, 2x,y33 The "Kuratovski pair" def X x Y = 2 (nig) | n f X, y f Y 3 $\frac{\prod X_i = \widehat{z}(x_i)_{i \in I} | x_i \in X_i \widehat{z}}{D_i^{i \in I} (x_i)_{i \in I} = \widehat{z}(i, x_i) | i \in I \widehat{z}}$ (Cartesian product). D: Disjoint union $\underbrace{\prod_{i \in \mathbf{I}} X_i}_{i} = \bigcup_{i \in \mathbf{I}} \underbrace{\xi_i \underbrace{\xi_i}}_{i} \times X_i$ $= \{(i, \pi) \mid i \in \overline{I}, \pi \in X_{\overline{i}}\}$ $\begin{array}{c} \uparrow : \cup_{i}, \forall_{i} \leq \chi_{i} \\ \implies \left(\coprod_{i} \cup_{i} \right) \cap \left(\coprod_{i} \vee_{i} \right) \end{array}$ $= \prod_{i} (v_i \cap v_i)$ T: f: X/2 -> Y is ds => fop is ds . T: There is a bijection between Open sets of a saturated open X/V sets of X. D: A saturated open set USX (5) Paths is a set that · Is open · nny, rEV => yEV (6)

D: A topologiceel group is a cet X with both a topology, J, \$ group properties (X, •, 2) I function Such that identity •:XxX - X is cts $(-)': X \longrightarrow x$ (2) ct'D: An isomorphism of Topological gravips is on isomorphism of groups that is also a homeomorphism. (4) T: X locally compact Hausdoff ⇒ X is homeomorphic to a subspace of a compact Hausdoff space. D: For LCH space X we

define the one-point-compactification X=XILERS which is compact Haucdorff. • USX, N∉U open <>> U open in X. ·USX, we u open ⇒ JKEU compart itu U=K° IL É ∞5.